Optimal Transportation and Monotonic Quantities on Evolving Manifolds

نویسنده

  • HONG HUANG
چکیده

In this note we will adapt Topping’s L-optimal transportation theory for Ricci flow to a more general situation, i.e. to a closed manifold (M, gij(t)) evolving by ∂tgij = −2Sij , where Sij is a symmetric tensor field of (2,0)-type on M . We extend some recent results of Topping, Lott and Brendle, generalize the monotonicity of List’s (and hence also of Perelman’s) W-entropy, and recover the monotonicity of Müller’s (and hence also of Perelman’s) reduced volume.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

A Class of Monotonic Quantities along the Ricci Flow

We construct a class of monotonic quantities along the normalized Ricci flow on closed n-dimensional manifolds.

متن کامل

Monotonic bounds in multistage mixed-integer linear stochastic programming: theoretical and numerical results

Multistage stochastic programs bring computational complexity which may increase exponentially in real case problems. For this reason approximation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal solution are very useful. In this paper we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic pr...

متن کامل

Counterexamples to Continuity of Optimal Transportation on Positively Curved Riemannian Manifolds

Counterexamples to continuity of optimal transportation on Riemannian manifolds with everywhere positive sectional curvature are provided. These examples show that the condition A3w of Ma, Trudinger, & Wang is not guaranteed by positivity of sectional curvature.

متن کامل

The intrinsic dynamics of optimal transport∗

The question of which costs admit unique optimizers in the Monge-Kantorovich problem of optimal transportation between arbitrary probability densities is investigated. For smooth costs and densities on compact manifolds, the only known examples for which the optimal solution is always unique require at least one of the two underlying spaces to be homeomorphic to a sphere. We introduce a (multiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009