Optimal Transportation and Monotonic Quantities on Evolving Manifolds
نویسنده
چکیده
In this note we will adapt Topping’s L-optimal transportation theory for Ricci flow to a more general situation, i.e. to a closed manifold (M, gij(t)) evolving by ∂tgij = −2Sij , where Sij is a symmetric tensor field of (2,0)-type on M . We extend some recent results of Topping, Lott and Brendle, generalize the monotonicity of List’s (and hence also of Perelman’s) W-entropy, and recover the monotonicity of Müller’s (and hence also of Perelman’s) reduced volume.
منابع مشابه
Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملA Class of Monotonic Quantities along the Ricci Flow
We construct a class of monotonic quantities along the normalized Ricci flow on closed n-dimensional manifolds.
متن کاملMonotonic bounds in multistage mixed-integer linear stochastic programming: theoretical and numerical results
Multistage stochastic programs bring computational complexity which may increase exponentially in real case problems. For this reason approximation techniques which replace the problem by a simpler one and provide lower and upper bounds to the optimal solution are very useful. In this paper we provide monotonic lower and upper bounds for the optimal objective value of a multistage stochastic pr...
متن کاملCounterexamples to Continuity of Optimal Transportation on Positively Curved Riemannian Manifolds
Counterexamples to continuity of optimal transportation on Riemannian manifolds with everywhere positive sectional curvature are provided. These examples show that the condition A3w of Ma, Trudinger, & Wang is not guaranteed by positivity of sectional curvature.
متن کاملThe intrinsic dynamics of optimal transport∗
The question of which costs admit unique optimizers in the Monge-Kantorovich problem of optimal transportation between arbitrary probability densities is investigated. For smooth costs and densities on compact manifolds, the only known examples for which the optimal solution is always unique require at least one of the two underlying spaces to be homeomorphic to a sphere. We introduce a (multiv...
متن کامل